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Pulse-enhanced stochastic resonance
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Abstract

By adding constant-amplitude pulses to a noisy bistable system, we enhance its response to monochromatic signals.
significantly magnifying its unpulsed stochastic resonance. We observe the enhancement in both numerical simulations and in
analog electronic experiments. This simple noninvasive control technique should be especially useful in noisy bistable systems
that are difficult or impossible to modify internally. 2000 Elsevier Science B.V. All rights reserved.

PACS:05.40.-a; 05.45.-a; 02.50.-r; 87.80.+y

In the phenomenon of stochastic resonance (SR), ronal arrays [5], it is difficult or impossible to modu-
a nonzero value of noise optimizes the response of alate the relevant barrier. In this Letter, we enhance SR
nonlinear system to a deterministic signal [1]. Over the by simply addingexternalcontrol pulses that increase
past two decades, SR has generated much interest, anthe likelihood of switching between states, thereby ob-
it has been demonstrated in numerous diverse exper-viating the need to internally modify the system.
iments, involving physical, chemical, and biological Consider a noisy bistable oscillator evolving ac-
systems [2]. Recently, Chow et al. [3] demonstrated cording to
how to enhance SR in a neuronal model by modulating
the intensity of the input noise. Moreover, Gammaitoni mx + yx = —V'[x] + Fylz], (1)
et al. [4] were able ta@ontrol SR, so as to either sup-
press or enhance the output power at the signal fre-
quency, by sinusoidally modulating the barrier height
between the two wells of a bistable system. Unfor-
tunately, in many systems of interest, especially bio-
engineering applications involving neurons and neu-

where the accent denotes differentiation with respect
position and the over-dots indicate differentiation with
respect to time. The bistable potential defined by
Vixl/ Ve = —2(x/Rp)? + (x/Rp)* has a barrier of
height Vg = 256, half width (or radiusRp = 5.66,
and maximum gradient (or maximum forcé), =
8Vy/v/27Rp = 69.7. The oscillator’s internal (back-
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white noise with zero mean and unit root-mean-square
amplitude. Because bistable SR is traditionally stud-
ied in the regime where viscosity dominates inertia
yXx > mi, we simplify the analysis by setting = 1
andm = 0.

To enhance the response of the oscillator Eq. (1)
to monochromatic inputs, we modify it by adding a
controller that applies pulseBp[x] = —Apx/|x| SO
that

mi +yx=—V'[x]+ Fy[t] + Fp[x]
= —Veglx]1+ Fn[r]. 2

Note that the pulsegr[x] dependmplicitly but cru-
cially on time, so that if the oscillator is on the left
side of the barrier, the controller pushes it to the right
Fp[x < 0] =+Ap, and if the oscillator is on the right
side, the controller pushes it to the lgfp[x > 0] =
—Ap. This effectively rocks the potential back and
forth (nonperiodically) so as to encourage the oscilla-
tor to hop the central barrier. Indeed, the pulsed oscil-
lator moves in an effective potenti&ks =V — x Fp
with a lower effective barrier height, as displayed in
Fig. 1.

Finally, to the modified system Eqg. (2), noisy
oscillator plus controller, we add a monochromatic
drive (or “signal”) Fp[t] = Ap Sin[2r fpt], so that

®)

A weak drive amplitudeAp = 0.11F), = 8 guaran-
tees that the deterministic dynamics is subthreshold.
(Because drive amplitudes ofp > F), effectively
rock the potential so that its inter-well barrier periodi-
cally disappears, the maximum forégyis also known

as the deterministic switching threshold.)

We numerically integrate the pulsed stochastic dif-
ferential Eq. (3) using a first-order technique [6] with
a time stepdr = 0.005. We generate Gaussian noise
using the Box—Muller algorithm [7] and a pseudo-

mi+yx=— e/ff[x] + Fyl[t]+ Fplt].
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Fig. 1. Time series of a noisy, highly damped, bistable oscillator
(jagged trace) subject to a non-periodic pulse controller (discrete
trace). The effective potentidles; has a reduced barrier height (as
well as a stable cusp at the origin). The bistable potential is charac-
terized byVp = 256, Rg = 5.66, and hencely; = 69.7, while the
drive parameters are/Tp = fp =0.195 andAp = 0.11F;; = 8.

random number generator. The finite time step slightly containing 2 periods of the drive. Each spectrum
correlates the noise and band limits its spectrum to a consists of the magnitude squared of a normalized
Nyquist frequencyfy = 1/2dt = 100. Fig. 1 displays  discrete Fourier transform [7]. We first filter the
a sample time series with the accompanying pulses, time series so as to remove intra-well oscillation

along with the effective potential for reference.
We next estimate the mean square amplitude per
frequency (or power spectruns) /] of a long time

and focus on inter-well hopping. Specifically, before
applying a fast Fourier transform algorithm to the
time series, we replace every negativewith —1

series by averaging the spectra of many segments ofand every positiver with +1. Filtering simplifies the

the time series. Typically, we averag¥2pectra each

SNR curves (such as those of Fig. 2) by suppressing
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Fig. 2. Spectral densitie§ versus frequencyf, for a series of pulse amplitudedp and fixed noise root-mean-square amplitude
o = 2.15Fy; = 150. Each spectrum consists of a sharp peak at the drive frequgnsuperimposed on a Lorentzian background. Inset:
signal-to-noise ratio SNR versus pulse amplitutle, for fixed noise amplitude = 2.15F); = 150. A pulse amplitudei p ~ Fj; optimizes
the SNR.

large SNRs at low noise amplitudes, and thereby we want to quantify the response of the modified
highlighting the local maxima at intermediate noise system Eq. (2), the pulsed (or controlled) oscillator,
amplitudes. However, we observe pulse-enhanced SRto amonochromatidrive Fp[t].

with or without filtering [10]. Fig. 2 displays a series of spectra for different
From a spectrum, we estimate an output signal-to- pulse amplitudesAp at fixed noise amplitude =
noise ratio by SNR= 101log,o[Sp/Sol, whereSp = 2.15Fy; = 150. Each spectrum consists of a sharp

S[fp] is the spectrum at the drive frequency and peak at the drive frequencyp superimposed on a
So is an estimate of the background spectrum near Lorentzian background [8]. (The rises in the high-
but not at the drive frequency. (The conventional frequency tails of the spectra are unavoidable aliasing
factor of 10 expresses the result in decibels.) This artifacts [7].) Increasing pulse amplitudes flatten the
traditional SNR definition [9] is appropriate because spectra while preserving their area, which is necessar-



16
20_I L aaanl ror ol P ......I_
4,17,
15— -
SNR
10~ -
5_ -
O—I T b A | T """l‘—
0.1 1 10 100

(017,

Fig. 3. SNR versus internal (background) noise mean square
amplitudes2, for a series of pulse amplitudesp . Increasing the
pulse amplitudes lowers the effective barrier heights and shifts the
SR peaks to lower noise amplitudes and higher SNRs; gray arrow
reflects a theoretical model. A pulse amplitudle ~ Fj; enhances

the SR by about 10 dB.

ily the unit mean square amplitude of the filtered time
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the local maxima to drift to lower noise amplitudes
and higher SNRs, culminating in a nearly 10 dB
enhancement over the unpulsed SR. Very large pulse
amplitudesAp > F); destroy the SR by rendering
the inter-well barrier insignificant and the potential
effectively monostable, so that the SNRs decrease
monotonically with noise.

We experimented with adding a hysteretic thresh-
old to the pulses to reduce the “chatter” in their ap-
plication (an example of which can be seen in Fig. 1
nearr = 12.17p). Adding a small ¢0.1Rp) hysteretic
threshold improved the SR enhancement slightly (by
an additionak2 dB). However, larger thresholds did
not yield further improvements. (We have also suc-
cessfully tested a variety of other feedback schemes,
such as negative proportional feedback [10].)

The essential mechanism of pulse-enhanced SR is
the effective reduction in the height of the barrier
separating the two wells of the bistable potential.
Although the effective potentiaVesf = V — xFp is
stationary, it is not bistable (note the stable cusp at
the origin in Fig. 1). Nevertheless, we can employ the
McNamara—Wiesenfeld theory of SR [8] to estimate
the shift and rise of the SR peak with increasing
pulse amplitude and decreasing barrier height, where
the effective barrier height is the difference between
the local maximum and minimum potential energies.

series. Large pulses enable even weak noise to causé his theoretical result, which is indicated by the bold

inter-well hopping, thereby flattening or “whitening”
the resulting noisy time series.

The inset to Fig. 2 displays the corresponding
SNRs. Small to moderate pulse amplitudés <
Fy cooperate with the internal (background) noise

gray arrow in Fig. 3, is in good agreement with the
simulations.

We have also observed pulse-enhanced SR experi-
mentally in an analog electronic circuit. Specifically,
we constructed a circuit [10] of passive elements (re-

and with the drive to increase the SNR, and a pulse sistors, capacitors) and active elements (operational

amplitude comparable to the maximum force provided
by the potentialAp ~ Fj maximizes the SNR.
Slightly larger pulse amplitudesp = F)s degrade the
SNR by stimulating the oscillator to hop the inter-well
barrier irrespective of the phase of the drive.

Fig. 3 displays SNR versus internal (background)
noise mean square amplitude?, for a series of
pulse amplitudesAp. For low noise, there is only
intra-well motion, which the filter eliminates, and
the SNR vanishes. (Although, the infinite “tails” of
ideal Gaussian noise do induce rare barrier hopping.)
For moderate noise amplitudes, the SNRs exhibit
prominentlocal maxima, the signature of classical SR.
Small to moderate pulse amplitudds < Fj; cause

amplifiers), whose voltage as a function of time mim-
ics the position of the driven pulsed oscillator de-
scribed by Eg. (3). (The review by Gammaitoni et al.
in Ref. [2] provides a good survey of such techniques.)
Fig. 4 displays the experimental results, which are in
good qualitative agreement with the simulations.
Pulse-enhanced SR is a simple strategy that an ex-
perimentalist can exploit to magnify a bistable sto-
chastic resonance. Although the pulses are controlled
by real-time monitoring of the time series, their struc-
ture Ap ~ Fj; depends only on the shape of the po-
tential (and not at all on the frequency of the mono-
chromatic drive), and hence may be determined be-
fore the experiment begins. Furthermore, this nonin-
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Fig. 4. Pulse-enhanced SR in an analog electronic circuit. A pulse
amplitudeA p = 0.6F); shifts the circuit's SR peak to lower noise
amplitudes and higher SNRs. The circuit’s bistable potential is char-
acterized bywp = 128, Rp = 5.66, and hencé’; = 34.8, while its
drive is determined by'p = 0.195 andA p = 0.29F; = 10.

vasive technique requires only the applicatioregf
ternal pulses, rather than thiaternal modification of
the potential, even as éffectivelydepresses the inter-
well barrier.
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